204 research outputs found

    Convex Hull of Planar H-Polyhedra

    Get PDF
    Suppose are planar (convex) H-polyhedra, that is, $A_i \in \mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let $P_i = \{\vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and $n = n_1 + n_2$. We present an $O(n \log n)$ algorithm for calculating an H-polyhedron with the smallest P={x⃗∈R2∣Ax⃗≤c⃗}P = \{\vec{x} \in \mathbb{R}^2 \mid A\vec{x} \leq \vec{c} \} such that P1∪P2⊆PP_1 \cup P_2 \subseteq P

    A Complete Characterization of the Gap between Convexity and SOS-Convexity

    Full text link
    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in nn variables of degree dd with C~n,d\tilde{C}_{n,d} and ΣC~n,d\tilde{\Sigma C}_{n,d} respectively, then our main contribution is to prove that C~n,d=ΣC~n,d\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d} if and only if n=1n=1 or d=2d=2 or (n,d)=(2,4)(n,d)=(2,4). We also present a complete characterization for forms (homogeneous polynomials) except for the case (n,d)=(3,4)(n,d)=(3,4) which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set Cn,dC_{n,d} of convex forms in nn variables of degree dd equals the set ΣCn,d\Sigma C_{n,d} of sos-convex forms if and only if n=2n=2 or d=2d=2 or (n,d)=(3,4)(n,d)=(3,4). To prove these results, we present in particular explicit examples of polynomials in C~2,6∖ΣC~2,6\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6} and C~3,4∖ΣC~3,4\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4} and forms in C3,6∖ΣC3,6C_{3,6}\setminus\Sigma C_{3,6} and C4,4∖ΣC4,4C_{4,4}\setminus\Sigma C_{4,4}, and a general procedure for constructing forms in Cn,d+2∖ΣCn,d+2C_{n,d+2}\setminus\Sigma C_{n,d+2} from nonnegative but not sos forms in nn variables and degree dd. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for computer assisted proofs of the paper added to arXi

    The extension problem for partial Boolean structures in Quantum Mechanics

    Full text link
    Alternative partial Boolean structures, implicit in the discussion of classical representability of sets of quantum mechanical predictions, are characterized, with definite general conclusions on the equivalence of the approaches going back to Bell and Kochen-Specker. An algebraic approach is presented, allowing for a discussion of partial classical extension, amounting to reduction of the number of contexts, classical representability arising as a special case. As a result, known techniques are generalized and some of the associated computational difficulties overcome. The implications on the discussion of Boole-Bell inequalities are indicated.Comment: A number of misprints have been corrected and some terminology changed in order to avoid possible ambiguitie

    Quadrilateral-octagon coordinates for almost normal surfaces

    Full text link
    Normal and almost normal surfaces are essential tools for algorithmic 3-manifold topology, but to use them requires exponentially slow enumeration algorithms in a high-dimensional vector space. The quadrilateral coordinates of Tollefson alleviate this problem considerably for normal surfaces, by reducing the dimension of this vector space from 7n to 3n (where n is the complexity of the underlying triangulation). Here we develop an analogous theory for octagonal almost normal surfaces, using quadrilateral and octagon coordinates to reduce this dimension from 10n to 6n. As an application, we show that quadrilateral-octagon coordinates can be used exclusively in the streamlined 3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing experimental running times by factors of thousands. We also introduce joint coordinates, a system with only 3n dimensions for octagonal almost normal surfaces that has appealing geometric properties.Comment: 34 pages, 20 figures; v2: Simplified the proof of Theorem 4.5 using cohomology, plus other minor changes; v3: Minor housekeepin

    A Bichromatic Incidence Bound and an Application

    Full text link
    We prove a new, tight upper bound on the number of incidences between points and hyperplanes in Euclidean d-space. Given n points, of which k are colored red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between the k red points and m hyperplanes spanned by all n points provided that m = \Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal and Aronov. We use this incidence bound to prove that a set of n points, no more than n-k of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also provide an infinite family of counterexamples to a conjecture of Purdy's on the number of hyperplanes spanned by a set of points in dimensions higher than 3, and present new conjectures not subject to the counterexample.Comment: 12 page

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most n−kn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(n−k2)−(k2)(n−k2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n−13)−t3orchard(n−1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    Full text link
    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page

    Rescaled coordinate descent methods for linear programming

    Get PDF
    We propose two simple polynomial-time algorithms to find a positive solution to Ax=0Ax=0 . Both algorithms iterate between coordinate descent steps similar to von Neumann’s algorithm, and rescaling steps. In both cases, either the updating step leads to a substantial decrease in the norm, or we can infer that the condition measure is small and rescale in order to improve the geometry. We also show how the algorithms can be extended to find a solution of maximum support for the system Ax=0Ax=0 , x≥0x≥0 . This is an extended abstract. The missing proofs will be provided in the full version

    Quantum Bounds on Bell inequalities

    Full text link
    We have determined the maximum quantum violation of 241 tight bipartite Bell inequalities with up to five two-outcome measurement settings per party by constructing the appropriate measurement operators in up to six-dimensional complex and eight-dimensional real component Hilbert spaces using numerical optimization. Out of these inequalities 129 has been introduced here. In 43 cases higher dimensional component spaces gave larger violation than qubits, and in 3 occasions the maximum was achieved with six-dimensional spaces. We have also calculated upper bounds on these Bell inequalities using a method proposed recently. For all but 20 inequalities the best solution found matched the upper bound. Surprisingly, the simplest inequality of the set examined, with only three measurement settings per party, was not among them, despite the high dimensionality of the Hilbert space considered. We also computed detection threshold efficiencies for the maximally entangled qubit pair. These could be lowered in several instances if degenerate measurements were also allowed.Comment: 12 pages, 4 tables; corrected Table I and modified Table III to comply with Table I; more detailed results are available at http://www.atomki.hu/atomki/TheorPhys/Bell_violation
    • …
    corecore